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Abstract Geophysical flows comprise a broad range of spatial and temporal scales,
from the planetary to meso-scale and microscopic turbulence regimes. The relation
of scales and flow phenomena is essential in order to validate and improve current
numerical weather and climate prediction models. While regime separation is of-
ten possible on a formal level via multi-scale analysis, the systematic exploration,
structure preservation, and mathematical details remain challenging. This chapter
provides an entry to the literature and reviews fundamental notions as background
for the later chapters in this collection and as a departure point for original research
in the field.

1 Introduction

The climate system varies on a multitude of temporal and spatial scales which
interact nonlinearly with each other. It is common that phenomena with small spatial
scales also vary fast while phenomena with large spatial scales vary more slowly.
For instance, small scale turbulent eddies have spatial scales from millimeters up to
a meter and exist between a few seconds to a few minutes. In the atmosphere, meso-

Christian L. E. Franzke
Meteorological Institute and Center for Earth System Research and Sustainability, University of
Hamburg, Hamburg, Germany, e-mail: christian.franzke@uni-hamburg.de

Marcel Oliver
Mathematical Sciences, Jacobs University, Bremen, Germany e-mail: oliver@member.ams.org

Jens D. M. Rademacher
Department of Mathematics, University of Bremen, Bremen, Germany e-mail: jdmr@uni-
bremen.de

Gualtiero Badin
Institute of Oceanography and Center for Earth System Research and Sustainability, University of
Hamburg, Hamburg, Germany, e-mail: gualtiero.badin@uni-hamburg.de

1



2 Christian L. E. Franzke, Marcel Oliver, Jens D. M. Rademacher and Gualtiero Badin

scale phenomena like convection and gravity waves have length scales between a
few 100 meters and about 20 km and time scales between hours and days. Synoptic
weather systems have lifetimes of a few days and spatial scales of up to 2000 km
while planetary-scale teleconnection patterns can extent throughout the hemisphere
and have time scales from a week to decades.

At the most fundamental level, scale separation in geophysical flows is described
by the concept of balance. When the Rossby number (the ratio between internal
forces and Coriolis forces) or the Froude number (the ratio of inertial flow velocity
to gravity wave speed) is small, there exists a slow or balanced component which
evolves nonlinearly and interacts only weakly with the high frequency components.
The fast motions can often be approximately characterized as the high frequency
linearwaves in the linearized equations ofmotion.We remark that the term “waves” is
sometimes used in a lose sense for describing spatio-temporal oscillations diagnosed
by Fourier wave modes, in particular in experimental studies.

A precise characterization of balance is a perennial theme in geophysical fluid dy-
namics; a recent review can be found in McIntyre (2015). Balance can be described
in two ways: kinematically via balance relations which define almost-invariant ob-
jects through a phase space constraint, and dynamically as balance models which
are closed sets of equations representing the slow dynamics on a balanced manifold,
thus approximating the flow of the full system under balanced initial conditions.
However, the notion of balance is intrinsically approximate: Emergence of imbal-
ance from balanced initial conditions is generic, though often exponentially small,
cf. Vanneste (2013). Temam and Wirosoetisno (2010) argue that even in the viscous
case there is no exact invariant balance manifold. A recent discussion can be found
in Whitehead and Wingate (2014).

Balance in the equatorial band of latitudes is a more subtle concept, as the Cori-
olis parameter changes sign at the equator causing a singularity in straightforward
small-Rossby number expansions. There are suitable equatorial scalings and balance
assumptions to formally circumvent the problem, usually at the price of losing some
(linear) waves (McIntyre, 2015; Verkley and van der Velde, 2010; Theiss and Mohe-
balhojeh, 2009). Recent work by Chan and Shepherd (2013) shows that it is possible
to capture equatorial Rossby and Kelvin waves in a full hierarchy of equatorial
balance models.

While the different scale regimes can have different physical mechanisms driv-
ing them, they are all described by the same general set of equations of motion.
Multi-scale asymptotics can be used as a systematic means of deriving new sets of
equations which only describe the flows at certain temporal and spatial scales, and
their interactions with other regimes; see, for example, Majda and Klein (2003) or
Klein (2010). These new sets of equations then describe the underlying dynamics
of the respective flow regimes and, thus, provide a better understanding of the flow
dynamics and the dominant balance conditions.

Recent studies elucidated the interactions between the planetary and synoptic
scale regimes (Dolaptchiev and Klein, 2013) and between the planetary and meso-
scale regimes (Shaw and Shepherd, 2009). The latter study also discusses how these
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multi-scale models can be used to systematically derive energy consistent subgrid-
scale parameterizations.

An unavoidable ingredient in comprehensive models of climate and global atmo-
sphere and ocean dynamics is the parameterizations of unresolved degrees of free-
dom. The numerical aspects in the context of geostrophic turbulence are discussed
in [insert reference to M3 chapter in this volume]. Of particular interest to us
is the use of stochastic modeling techniques for developing such parameterizations,
in particular the connection of stochastic subgrid parameterizations with traditional
deterministic multi-scale asymptotics. Theoretical work on the elimination of fast
scales is often based on averaging techniques, which naturally apply to stochastic
modeling as well. Mathematical introductions to this direction of model reduction
are given by Givon et al. (2004); Pavliotis and Stuart (2008) while Franzke et al.
(2015) and Gottwald et al. (2017) provide introductions to stochastic climate model-
ing. The parametrization problem is also an issue of data collection and assimilation,
which we do not discuss here.

Part of the motivation for pursuing stochastic modeling approaches derives from
the observation that most numerical weather predictions are under-dispersive, i.e.
the observed weather lies too often outside of the forecast ensemble. To increase the
ensemble spread, stochastic parameterizations have been introduced. The European
Centre for Medium Range Weather Forecasts (ECMWF) is leading the introduction
of stochastic parameterizations into numerical weather and seasonal climate predic-
tion models. They currently use two different schemes operationally, the Stochas-
tically Perturbed Parameterization Tendencies Scheme (SPPT) and the Stochastic
Kinetic-Energy Backscatter Scheme (SKEBS), described in Palmer et al. (2009).

SPPT is based on the notion that, especially with increasing numerical resolu-
tion, the equilibrium assumption no longer holds and the subgrid-scale state should
be sampled rather than represented by the equilibrium mean. Consequently, SPPT
multiplies the accumulated physical tendencies at each grid-point and time step with
a random pattern that has spatial and temporal correlations. SKEBS aims at repre-
senting model uncertainty arising from unresolved and unrepresented subgrid-scale
processes by introducing random perturbations to the streamfunction. SKEBS is
based on the rationale that a small fraction of the numerically dissipated energy
will be re-injected into the resolved scales due to nonlinear triad interactions and
acts effectively as a systematic forcing. Current deterministic climate models, how-
ever, neglect this energy pathway. The use of stochastic parameterizations in climate
models is less well established due to the required re-tuning of all deterministic
parameterizations. The current use of stochastic parameterizations is rather ad hoc
(Franzke et al., 2015) and does not consider energy and momentum consistency.
For instance, SPPT has no rigorous mathematical justification; it is based on trial
and error and empirical evidence that it increases the spread of ensemble forecasts.
However, this does not necessarily make the forecasts more precise. SKEBS has
some mathematical justification. Theory suggests that most of the “subgrid-scale”
energy should be re-injected close to the truncation scale, i.e., at scales where nu-
merical dissipation acts. However, in practice, the re-injected energy gets damped
very quickly with no improvement in forecast skill. The usual remedy is to re-inject
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the energy into all scales at a rate empirically determined by trying to match a known
energy spectrum. While there is growing evidence showing the benefits of stochastic
parameterizations, there is also a need for more rigorous mathematical approaches,
particularly in the light of the observation that errors introduced by inconsistent
treatment of the interactions between resolved and unresolved scales can be very
significant (Shaw and Shepherd, 2009; Burkhardt and Becker, 2006; Becker, 2003).

This chapter, first, intends to give an overview on current progress and open
issues in multi-scale modeling of geophysical flows. We aim at some broadness, but
our focus is clearly biased by our own research interests in geometric and structure
preserving methods, dynamical systems techniques, and stochastic modeling.

Second, and no less important, a large part of the chapter is devoted to laying down
foundational concepts, starting with the equations of motion, nondimensionalization,
the introduction of the classical limits in geophysical fluid dynamics, variational and
Hamiltonian methods, dissipation, and stochastic model reduction. While much of
this is standard textbookmaterial, covered in great detail, for example, in the classical
books by Gill (1982), Kamenkovich et al. (1986), and Pedlosky (1987), or in the
more recent books by Salmon (1998), Vallis (2006), and Olbers et al. (2012), our
intent is to introduce the foundations most relevant to the questions raised here in
concise and unified notation. In our presentation, we take the rotating Boussinesq
equations as the single parent model from which all other models arise, aim at a
clear statement of simplifying assumptions, and give some consideration to the full
Coriolis term and to equatorial scalings.

The remainder of this chapter is structured as follows. Section 2 introduces
the rotating Boussinesq equations as the governing equations of geophysical flow,
discusses imbalance variables, nondimensionalization, and several simplifiedmodels
derived in different scaling limits: the hydrostatic approximation in form of the
primitive equations, the quasi-geostrophic equations in several forms, and the shallow
water equations. Section 3 discusses the variational principle which gives rise to the
equations of motion as well as Poisson and Nambu formulations of the dynamics.
Section 4 provides a high-level overview of the role of dissipation and its relation
to turbulence and to dynamical systems methods for studying linear and nonlinear
waves. Section 5 introduces systematic approaches for the stochastic modeling of
fast motions. The chapter closes with a brief outline of questions we are addressing
in our current research.

2 The governing equations

2.1 Rotating Boussinesq equations

As the starting point for this exposition, we consider the rotating Boussinesq equa-
tions in the tangent plane approximation. These equations simplify the full equations
for global atmospheric or oceanic dynamics in two fundamental ways.
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First, the Boussinesq approximation is based on the observation that density fluc-
tuations are so small that their impact on inertia is negligible while their impact on
buoyancy remains significant. This assumption is typically very well satisfied in the
ocean, so that most ocean general circulation models assume the Boussinesq approx-
imation. For atmospheric flows, the Boussinesq approximation is more tenuous, but
under the so-called anelastic approximation, the assumption of constant background
pressure, and the use of vertical pressure coordinates, the equations governing large-
scale atmospheric flows can also be written in the same form. One main consequence
of the Boussinesq approximation is the absence of acoustic waves.

Second, the tangent plane approximation is based on the observation that the
local metric is nearly Cartesian. Thus, we work in Cartesian coordinates on a tangent
plane while still allowing variations in the Coriolis parameter with latitude so that
equatorial scalings can be explored. A tangent plane model is clearly not suitable for
building global models, but is more convenient for studying scale interaction from
small to synoptic scale motions.

We shall also restrict ourselves to the simplest possible equation of state where
changes in density depend linearly on changes in temperature and neglect source
terms. With these provisions, our governing equations read

Dtu + 2Ω × u = −
1
ρ0
∇p −

gρ

ρ0
k + ν∆u , (1a)

∇ · u = 0 , (1b)
Dt ρ = κ∆ρ, (1c)

where Dt = ∂t + u · ∇ denotes the material derivative, u is the three-dimensional
fluid velocity field,

Ω = |Ω|
*.
,

0
cos ϑ
sin ϑ

+/
-

(2)

the angular velocity vector describing the rotation of the earth at latitude ϑ, ρ0 a
constant reference density, p the departure from hydrostatic pressure, g the constant
of gravity, ρ the departure from the constant reference density, k the unit vector
in z (vertical) direction, ν the coefficient of viscosity, and κ is proportional to the
coefficient of thermal diffusion.

A derivation and a discussion of the underlying assumptions can be found in any
classical textbook on geophysical fluid dynamics, e.g. Gill (1982), Pedlosky (1987),
or Vallis (2006).

The dissipative terms on the right hand side describe, at this point, molecular
viscosity and diffusion processes. In typical large-scale circulation problems, they
act at scales far beyond what can be resolved in any practical numerical simulation.
Thus, they will be replaced, explicitly or implicitly via a stable numerical scheme by
eddy diffusion and/or numerical diffusion terms. Such terms may not be harmonic
or isotropic, an issue to which we will return in Section 4.1 below.
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We shall consider (1) on a domain Ω with a free upper boundary at z = h(xh, t)
and rigid bottom at z = −b(xh). We shall not discuss lateral boundary conditions
here. For highly idealized studies, for example on the phenomenology of geostrophic
turbulence, periodic lateral boundary conditions are frequently used. At the bottom
boundary, we impose the impermeability condition n · u = 0, which may be written

uh · ∇hb = w , (3a)

plus viscous boundary conditions or bottom drag parameterizations if applicable.
Here and below, n denotes the outward unit normal vector and the subscript “h”
refers to the horizontal components. The free surface is described by the condition
σ(x, t) ≡ h(xh, t) − z = 0 and is subject to the kinematic boundary condition
Dtσ = 0, i.e.,

∂th + uh · ∇hh = w . (3b)

As a second condition at the free surface, we have the dynamic boundary condition

p = ps , (3c)

i.e., pressure equals a specified external pressure ps at the surface. In the viscous
case, the free surface boundary conditions are augmented by (wind) stress conditions.
Integrating the incompressibility constraint (1b) in z and using the two kinematic
boundary conditions (3a) and (3b), we obtain the free surface equation

∂th + ∇h ·

∫ h

−b

uh dz = 0 . (4)

Propagation in time then uses the horizontal momentum equations, the free surface
equation, and the advection of buoyancy (1c) as prognostic quantities while the
vertical velocity w is reconstructed from the incompressibility constraint; see, e.g.,
Klingbeil and Burchard (2013).

The free surface equation can be approximated in various ways. Replacing the
upper limit of integration in (4) by z = 0 while still keeping the time derivative ∂th
gives a linearization of the free surface equation which can be formulated in the
spirit of Chorin’s projection method where the free surface update is obtained by
solving an elliptic equation. This removes time-step restrictions due to fast surface
waves; surface waves are damped when the time step becomes too large.

A more drastic approximation is a rigid lid upper boundary, where all equations
are posed on a fixed domain bounded above at z = 0. Consequently, the dynamic
boundary condition (3c) must be dropped. The time evolution of all fields can be
computed by an incompressible solver. An approximation of the elevation of the free
surface may then be diagnostically obtained by solving the equivalent hydrostatic
pressure relation

ps = gρ0h (5)
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for h. The rigid lid approximation removes all surface gravity waves, which is often
a reasonable approximation in the ocean.

We finally remark that the inviscid Boussinesq equations conserve the total energy

H =
∫
Ω

1
2
|u |2 +

g

ρ0
ρz dx (6)

and materially conserve potential vorticity

q = (2Ω + ω) · ∇ρ . (7)

In other words, q satisfies the advection equation

Dtq = 0 . (8)

Both conservation laws can be verified by direct computation. However, in Sec-
tion 3.1 we will show that they emerge elegantly from symmetries in the underlying
variational principle.

2.2 Imbalance variables

Large-scale geophysical flow, at least in the sub-equatorial regime, is to a substan-
tial part determined by potential vorticity alone (McIntyre and Norton, 2000). It is
therefore natural to use potential vorticity as one of the prognostic variables and
to augment the set of prognostic variables by so-called imbalance variables suit-
ably chosen such that they remain small so long as the flow is nearly balanced. In
the context of the f -plane shallow water equations, these additional variables are
divergence and ageostrophic vorticity; they underlie the discussion of spontaneous
emission of gravity waves by Ford et al. (2000), also see the discussion in [Badin et
al., L2 chapter, this volume]. Mohebalhojeh and Dritschel (2001) report numerical
advantages when simulating shallow water using this set of variables, and Dritschel
et al. (2016) find that the differences between several variational balance models can
only be understood when looking at balance relations formulated in terms of such
imbalance variables. Imbalance variables for the primitive equations are introduced,
for example, by McIntyre and Norton (2000).

For the f -plane Boussinesq system in the traditional approximation, there are dif-
ferent possible choices. Dritschel and Viúdez (2003) use the horizontal components
of

A = ∇ × u −
g

ρ0 f
∇ρ, (9)

which leads to a nonlinear inversion problem for recovering the vector potential
of A. Alternatively, it is also possible to use ageostrophic vorticity and divergence
(Vanneste, 2013). However, as noted above, the traditional and the hydrostatic ap-
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proximations are not independent. Thus, we shall derive (for purposes of exposition
working at the linear level only) a version of the nontraditional f -plane Boussinesq
system in imbalance variables.

To begin, we note that linear inertia-gravity waves require rotation and strong
stratification, which can be expressed by assuming a decomposition of the density
of the form (33) with constant background profile, so that

Dt ρ −
N2ρ0
g

w = 0 (10)

and therefore, by incompressibility,

∂zDt ρ +
N2ρ0
g
∇h · uh = 0 . (11)

Further, taking the full divergence of the inviscid Boussinesq momentum equation
(1a), invoking incompressibility, differentiating in time, and using (11), we find

∇ · (2Ω × ∂tu) +
1
ρ0

∂t∆p − N2
∇h · uh = NL , (12)

where NL is used to denote any number of nonlinear terms, possibly different from
one line to the next. Next, taking the horizontal divergence of (1a) yields

∂t∇h · uh + ∇h · (2Ω × u)h +
1
ρ0
∆hp = NL . (13)

This motivates taking the horizontal divergence

δ = ∇h · uh (14)

and the acceleration divergence or ageostrophic vorticity

γ = −∇h · (2Ω × u)h −
1
ρ0
∆hp (15)

as imbalance variables, so that ∂tδ = γ + NL. Then, using (13) to eliminate ∂t∆p,
we compute

∂t∆γ = −∆∇h · (2Ω × ∂tu)h + ∆h∇ · (2Ω × ∂tu) − N2
∆hδ + NL

= −∂zz∇h · (2Ω × ∂tu)h + ∆h(2Ω⊥h · ∂tzuh) − N2
∆hδ + NL . (16)

Writing (2Ω × u)h = f u⊥h − w 2Ω⊥h in the first term on the right, substituting the
horizontal momentum equation for all instances of ∂tuh, invoking incompressibility
to replace all instances of ∂zw by −δ, eliminating ∆hp via the definition of γ =
∂tδ + NL, and collecting terms, we find
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∂t∆γ = − f 2 ∂zzδ − f ∂z (2Ωh · ∇hδ) + (2Ω⊥h · ∇h)2δ

+ f ∂z (2Ωh · ∇
⊥
h∇
⊥
h · uh − 2Ωh · ∆huh) − (N2 + |2Ωh |

2) ∆hδ + NL . (17)

Finally, applying the vector identity∇h∇h+∇
⊥
h∇
⊥
h = I ∆h twice and collecting terms,

we can write the system in the form of a nonlinearly perturbed wave equation, where

∂tδ − γ = NL , (18a)

∂t∆γ + (2Ω · ∇)2δ + N2
∆hδ = NL . (18b)

Without the nonlinear terms, this system is equivalent to the equation considered by
Gerkema and Shrira (2005a) to study linear waves on the nontraditional f -plane;
for related work on the nontraditional β-plane, see Gerkema and Shrira (2005b),
and Kasahara and Gary (2010) and Stewart and Dellar (2012). The shallow water
equations with full Coriolis parameter on the sphere are considered by Tort et al.
(2014) and linear stability of nonlinear jet-type solutions is investigated by Tort et al.
(2016).We finally note that when the traditional approximation is made, (18) directly
reduces to the system studied, e.g., by Vanneste (2013).

When the nonlinear terms in (18) are retained, these equations together with the
advection equation for potential vorticity (7) form a closed system for the evolution
of the f -plane Boussinesq equations because (u, p, ρ) can be recovered from (q, δ, γ)
by inverting nonlinear elliptic equations. These involve boundary conditions, and for
vertically bounded domains with w = 0 at z = 0, H require solving Dt ρ = 0 at the
top and bottom boundaries. The two dimensional fields b(xh, 0, t) and b(xh, H, t) are
therefore additional degrees of freedom. Further complications arise for horizontally
bounded domains.

2.3 Mid-latitude scalings

Let us now consider possible scaling regimes for (1) on a tangent plane atmid-latitude
ϑ0. In this regime, the flow is expected to be horizontally isotropic, but vertical scales
will generally differ. We thus split (1a) into the horizontal and vertical component
equations and non-dimensionalize by introducing typical horizontal velocity U ,
typical vertical velocity W , typical Coriolis parameter f0 = 2|Ω| cos ϑ0, typical
horizontal length scale L, typical vertical length scale H , typical time scale T ,
typical pressure scale P, and typical density scale Γ, inserting u = U û, w = W ŵ,
2Ω = f0Ω̂, etc., into the Boussinesq equations (1), and finally dropping the hats, we
obtain
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U
T
∂tuh +

U2

L
uh · ∇huh +

UW
H

w ∂zuh + f0UΩz u
⊥
h − f0WΩ⊥h w = −

P
Lρ0
∇hp ,

(19a)
W
T
∂tw +

UW
L

uh · ∇hw +
W 2

H
w ∂zw + f0UΩ⊥h · uh = −

P
H ρ0

∂zp −
gΓ

ρ0
ρ, (19b)

U
L
∇h · uh +

W
H
∂zw = 0 , (19c)

Γ

T
∂t ρ +

UΓ
L

uh · ∇hρ +
W N2ρ0

g
w ∂z ρ = 0 . (19d)

Here and below, N denotes the typical Brunt–Väisälä or buoyancy frequency defined
as

N2 = −
g

ρ0

[
∂ρ

∂z

]
, (20)

where we write [∂ρ/∂z] to denote the typical vertical density gradient.
We look at the problem on a horizontally advective time scale, i.e., on a time scale

in which fluid parcels travel a horizontal distance of order one. This fixes

1
T
∼

U
L
. (21)

Our goal is now to estimate the vertical velocity scale W . Introducing the aspect
ratio

α =
H
L
, (22)

we may obtain a first simple estimate, W . αU, directly from the incompressibility
condition. However, the vertical velocity gradient does not necessarily participate
in the dominant balance in the incompressibility relation. Indeed, we shall see that
rotation as well as stratification may provide sharper scaling bounds on W .

Turning to the “thermodynamic equation” (19d), we obtain the scaling bound

W ∼ λ
gΓ

ρ0

U
N2L

= λ
gΓ

ρ0

L
U
α2 Fr2 (23)

for some λ . 1 with Froude number

Fr =
U

N H
. (24)

Assuming that the dominant balance in the horizontal momentum equation (19a)
is between horizontal Coriolis force and horizontal pressure gradient and that the
dominant balance in the vertical momentum equation (19b) is between buoyancy
and vertical pressure gradient, we have

f0LU ρ0 ∼ P ∼ gΓH . (25)

Introducing the Rossby number
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Ro =
U
f0L

(26)

and writing f ≡ Ωz for the nondimensionalized rotation rate, we can rewrite the
momentum equations as

Ro (∂tuh + uh · ∇huh) + λ Fr2 w ∂zuh + f u⊥h − λα
Fr2

Ro
Ω⊥h w = −∇hp , (27a)

λ α2 Fr2 (∂tw + uh · ∇hw) + λ2 α2 Fr4

Ro
w ∂zw − αΩ

⊥
h · uh = −∂zp − ρ . (27b)

Note that, so far, we have not assumed smallness of any parameter beyond fixing the
dominant balance in the momentum equations. Let us now, in addition, assume that
λ ∼ 1, i.e., that the estimate on W implied by the thermodynamic equation is sharp,
and further assume that we are on a 3D advective time scale, i.e., that

Ro = Fr2 . (28)

Then

Ro (∂tuh + u · ∇uh) + f u⊥h − αΩ
⊥
h w = −∇hp , (29a)

α2 Ro (∂tw + u · ∇w) − αΩ⊥h · uh = −∂zp − ρ . (29b)

2.4 Hydrostatic approximation

Then hydrostatic balance is based on the scaling

Ro � α2 Fr2 (30)

or α � 1. Thus, in 3D advective scaling, hydrostatic balance is purely a small aspect
ratio assumption, and if it is made, then the vertical contributions to the Coriolis
force are small as well. We altogether obtain the hydrostatic primitive equations

Ro (∂tuh + u · ∇uh) + f u⊥h = −∇hp , (31a)
∂zp = −ρ, (31b)
∇ · u = 0 , (31c)
Dt ρ = 0 . (31d)

In this context, we remark that it has long been known that the hydrostatic approx-
imation requires the “traditional approximation” where the vertical contributions to
the Coriolis force are neglected to ensure that the Coriolis force is energy-neutral;
see, for example, the discussion in White (2002) and Klein (2010).

While there have been early studies of the global circulation using balance models
as discussed further below, contemporary OGCMs are based on the primitive equa-
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tions. For the study of small scale phenomena, the use of non-hydrostatic models
is advancing (Fringer, 2009). In the atmosphere, where non-hydrostatic effects are
more pronounced, non-hydrostatic models are routinely used (Saito et al., 2007).

2.5 The quasi-geostrophic approximation on the β-plane

We now turn to the quasi-geostrophic approximation on a mid-latitude β-plane. It is
a more severe approximation than hydrostaticity. We modify the assumptions made
in Section 2.3 in three respects. First, we look at the scaling

Fr ∼ Ro , (32)

thereby breaking the 3D-advective scaling. Advection in the vertical is thus coming
in at higher order than advection in the horizontal direction. Second, we assume
that pressure variations are small relative to a static vertical stratification profile. We
write

ρ(x, t) = ρ̄(z) + ρ′(x, t) ; (33)

it is then convenient to introduce the perturbation pressure ψ satisfying

∂zψ = ∂zp + ρ̄ . (34)

Third, wemake the β-plane approximationwith the assumption that the change of the
Coriolis parameter in y is O(Ro). In nondimensionalized variables, this assumption
reads

f = 1 + Ro βy , (35)

where Ro β is the meridional gradient of the Coriolis parameter. Inserting (33) into
the inviscid thermodynamic equation (1c) and dropping the prime, we nondimen-
sionalize as follows:

UΓ
L

(∂t ρ + uh · ∇hρ) +
WΓ

H
w ∂z ρ +

W N2ρ0
g

w ∂z ρ̄ = 0 . (36)

Keeping the last term in the dominant balance leads, once again, to a scaling relation
of the form (23) with λ = 1, so that, in non-dimensional variables,

∂t ρ + uh · ∇hρ + Row ∂z ρ + w ∂z ρ̄ = 0 . (37)

Similarly, the momentum equations in non-dimensional variables, under the same
dominant balance assumptions as in Section 2.3 above, read

Ro (∂tuh + uh · ∇huh + Row ∂zuh) + f u⊥h − αRoΩ⊥h w = −∇hψ , (38a)

α2 Ro2 (∂tw + uh · ∇hw + Row ∂zw) + αΩ⊥h · uh = −∂zψ − ρ, (38b)
∇h · uh + Ro ∂zw = 0 . (38c)
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The quasi-geostrophic equations are obtained by the leading order of this system in
the formal limit Ro→ 0 and α → 0. The leading order vertical momentum equation
is, once again, the hydrostatic balance relation

∂zψ = −ρ . (39)

To determine the leading order balance in the horizontal momentum equation (38a),
we need to separate the divergence from the curl component. For the divergence, the
dominant contribution is geostrophic balance, i.e.

uh = ∇
⊥
h ψ . (40)

(Note that there is no f in this relation as the deviation from constant Coriolis
parameter comes in at O(Ro) only.) The leading order of the curl of (38a) could be
obtained by direct computation, but it is easier to work from the expression for the
Boussinesq potential vorticity which, in dimensional variables, is given by (7). In
non-dimensional variables, the potential vorticity reads

q =
(

f0Ωh +
U
H
∂zu

⊥
h −

W
L
∇
⊥
h w

)
·
Γ

L
∇hρ

+

(
f0 f +

U
L
∇
⊥
h · uh

) (
Γ

H
∂z ρ +

N2ρ0
g

∂z ρ̄
)

=
UΓ
HL

((
α

Ro
Ωh + ∂zu

⊥
h − α

2 Ro∇⊥h w
)
· ∇hρ

+

( 1
Ro
+ βy + ∇⊥h · uh

) (
∂z ρ +

1
Ro

∂z ρ̄
))

(41)

and satisfies the advection equation

(∂t + uh · ∇h + Row ∂z )q = 0 . (42)

Since ρ̄ does not depend on time or on the horizontal position, the leading order
terms appear at O(Ro−1) and read

Dh
t (∂z ρ + ∇⊥h · uh ∂z ρ̄ + βy ∂z ρ̄) + w ∂zz ρ̄ = 0 , (43)

where Dh
t = ∂t + uh · ∇h denotes the horizontal material derivative. Eliminating w

with the leading order terms of (37), dividing through by ∂z ρ̄ and simplifying, we
obtain the quasi-geostrophic potential vorticity equation,

Dh
t

(
∂z

ρ

∂z ρ̄
+ ∇⊥h · uh + βy

)
= 0 . (44)

Using hydrostatic balance, the leading order of (38b) and the curl of geostrophic
balance (40), the quasi-geostrophic equations can bewritten in the well known closed
form
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Dh
t

(
∆hψ − ∂z

∂zψ

∂z ρ̄
+ βy

)
= 0 , (45a)

uh = ∇
⊥
h ψ . (45b)

The advected quantity in (45a) is the quasi-geostrophic potential vorticity. To recover
the stream function ψ from the potential vorticity, we need to solve a second order
equation. It is elliptic provided that ∂z ρ̄ < 0, i.e., the fluid is stably stratified. More-
over, we need boundary conditions. At the lateral boundaries, the no-flux condition
n · u = 0 constrains only the tangential derivative of ψ. A consistent lateral boundary
condition is ψ = 0 on a simply-connected domain; for the multiply-connected case,
see McWilliams (1977). In more idealized situations, channel geometries or, on the
f -plane, periodic boundary conditions are frequently used.

At the top and bottom boundaries, we use Neumann boundary conditions. Due to
hydrostatic balance, ∂zψ = −ρ, where ρ satisfies the leading order of (37),

Dh
t ρ + w ∂z ρ̄ = 0 . (46)

At the top boundary, it is common to assume rigid lid conditions, i.e., w = 0. For
a correction to a rigid lid condition, see, e.g., Olbers et al. (2012). At the bottom
boundary, the impermeability condition reads uh ·∇hb+w = 0, with b(xh) denoting
the equilibrium depth.

To re-dimensionalize the quasi-geostrophic equations, it is convenient to express
ψ in units of a horizontal stream function, not in pressure units. Moreover, we
introduce the z-dependent Brunt–Väisälä frequency

N2(z) = −
g

ρ0

dρ
dz

. (47)

Then we can write (45) in terms of the quasi-geostrophic potential vorticity q as

∂tq + ∇⊥h ψ · ∇q = 0 , (48a)

q = f + ∆hψ + f 2
0 ∂z

∂zψ

N2(z)
. (48b)

Linearized about the trivial solution, these equations allow propagation of internal
waves in the horizontal plane. Their phase velocities cn are related to the eigenvalues
λn = c−2

n of the vertical structure operator, the last term in (48b). Of particular
importance is the speed c1 of the fastest wave. The associated horizontal length scale
is called the (first) internal or baroclinic Rossby radius of deformation,

Ld =
c1
f0
=

N H
π f0

(49)

where the second equality holds in the case of uniform stratification. It is the scale
at which buoyancy forces and Coriolis forces are equally important; it is also ap-
proximately the scale of strongest conversion of potential into kinetic energy via
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baroclinic instability; see, e.g., Vallis (2006) for details. In the ocean, Ld varies from
less that 10 km at high latitudes up to 200 km in the tropics.

As the quasi-geostrophic equations are typically used for proof-of-concept studies,
two simplifications are particularly useful. First, if the equations are posed in flat
horizontal layer and density and velocity are independent of z, we obtain the two-
dimensional or barotropic quasi-geostrophic equation

∂tq + ∇⊥ψ · ∇q = 0 , (50a)
q = f + ∆ψ , (50b)

where we drop the subscript “h” on the operators as all fields are fully two-
dimensional. This form of the barotropic quasi-geostrophic equation implicitly car-
ries a rigid lid assumption. It is possible to derive the equation without this assump-
tion, in which case the expression for potential vorticity acquires an extra term; see
(65) and the surrounding discussion.

Second, we can derive a simple model for a baroclinic rotating flow by assum-
ing that the fluid moves in two uniform layers with constant depths H1 and H2,
respectively, with layer 1 assumed on top of layer 2. We suppose that the potential
vorticities qi and stream functions ψi , where i ∈ {1, 2}, are taken at the layer centers.
The density, on the other hand, is taken at the layer boundaries. Using finite differ-
ences, ∂zψ ≈ 2(ψ1 − ψ2)/(H1 + H2) at the layer interface. At the top and bottom
interfaces, boundary condition (46) with w = 0 applies and the hydrostatic relation
implies that ∂zψ is advected. Altogether, using finite differences across each layer for
the outer z-derivative in (48b), we obtain the quasi-geostrophic two-layer equations

(∂t + ∇⊥ψ1 · ∇)
(

f + ∆ψ1 +
2 f 2

0
N2 H1 (H1 + H2)

(ψ2 − ψ1)
)
, (51a)

(∂t + ∇⊥ψ2 · ∇)
(

f + ∆ψ2 +
2 f 2

0
N2 H2 (H1 + H2)

(ψ1 − ψ2)
)
. (51b)

When the two layers have equal depth H1 = H2 = H/2, we can write the two-layer
quasi-geostrophic system in the symmetric form

∂tqi + ∇⊥ψi · ∇qi = 0 , (52a)

qi = f + ∆ψi + (−1)i k2
d (ψ1 − ψ2)/2 , (52b)

with kd = L−1
d , where the (single) internal Rossby radius is now given by

Ld =
N H
√

8 f0
. (53)

A detailed exposition of more general multi-level and multi-layer models can be
found in Pedlosky (1987) or Kamenkovich et al. (1986). For a variational perspective
on quasi-geostrophic theory, see Holm and Zeitlin (1998) and Bokhove et al. (1998).
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2.6 Rotating shallow water equations

We shall finally introduce the rotating shallow water equations which describe the
horizontal motion in a thin layer of an incompressible fluid with a free surface and
constant density. The shallow water equations are often used as a simple test bed in
situations where baroclinic effects are negligible or to be excluded.

When the density is constant, the Boussinesq equations (1) reduce to the three-
dimensional Euler equations with rotation and gravitational forces acting in the
vertical. Following the notation used above, they read

Dtu + 2Ω × u = −
1
ρ0
∇p − gk , (54a)

∇ · u = 0 . (54b)

We now make the following scaling assumptions. First, as before, we impose an
advective time scale (21). Second, we assume that the aspect ratio α, defined in
(22), is small. Without stratification, we only have the divergence condition (54b) to
constrain the vertical velocity, so that W ∼ αU. Third, we suppose that

Ro . Bu =
gH

f 2
0 L2

, (55)

where the dimensionless parameter Bu is known as the Burger number, which can
also be interpreted as the square ratio of the Rossby radius of deformation to the
horizontal length scale L. We remark that condition (55) is consistent with both the
semi-geostrophic and the quasi-geostrophic scaling regime of shallow water theory,
see the discussion in Section 2.7 below.

Under these assumptions, the formal limit α → 0 imposes, again simultaneously,
the hydrostatic and the traditional approximation, so that, using a rescaled pressure
but otherwise dimensional variables,

Dtuh + f u⊥h = −∇hp , (56a)
0 = ∂zp − g , (56b)
∇ · u = 0 , (56c)

The hydrostatic equation (56b) implies that the pressure is fully determined by
the hydrostatic pressure. To be definite, let us suppose that z = 0 describes the
equilibrium free surface, h(xh, t) the departure of the free surface from equilibrium,
and b(xh) the equilibrium depth of the layer. If the pressure at the free surface is
zero, integration of (56b) yields

p(xh, t) = g (h(xh, t) − z) . (57)

In particular, the horizontal pressure gradient is entirely independent of z. Thus,
assuming that the velocity field is initially independent of z, it will remain so for
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all times, and the material advection operator Dt in (56a) reduces to horizontal
material advection Dh

t . Finally, we can eliminate w from the divergence condition
(56c) by vertical integration under zero normal flow boundary conditions, yielding
a continuity equation for the total layer depth. Dropping the h-subscript, as all
quantities are now fully two-dimensional, the resulting equations, known as the
rotating shallow water equations, read

∂tu + u · ∇u + f u⊥ + g∇h = 0 , (58a)
∂th + ∇ · ((h + b)u) = 0 . (58b)

These equations can also be derived from a variational principle, see, e.g., Salmon
(1998). The generalization to stratified rotating shallow water equations is based on
assuming that the fluid consists of layers with constant density that are separated
by interfaces. As for the above single layer rotating shallow water equations, one
assumes that the amplitude of the deformation of each interface to be much less
than the layer depths. For a variational derivation of the multi-layer rotating shallow
water equations, see, e.g., Salmon (1982) and Stewart and Dellar (2010).

The rotating shallow water equations conserve the energy

H =
1
2

∫
Ω

h |u |2 + g h2 dx , (59)

and materially conserve the potential vorticity

q =
f + ζ
h + b

=
ζa

h + b
(60)

where
ζ = ∇⊥ · u (61)

is the relative vorticity and ζa = f + ζ the absolute vorticity. Both conservation laws
can be shown to arise as Noetherian conservation laws as outlined in Section 3.1.

2.7 Geostrophic scalings

The Boussinesq equations with a free surface upper boundary also support surface
gravity waves. Surface waves are retained in the shallow water approximation and
textbook linear wave theory shows that they their maximal phase velocity is bounded
by ce =

√
gH . This speed defines, as does (49) for the internal modes, the external

or barotropic Rossby radius of deformation

Le =
ce
f0
=

√
gH
f0

(62)
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as the horizontal scale at which free surface effects and rotation are of equal impor-
tance. In the deep ocean, for example, Le ≈ 2000 km, thus it is often appropriate to
consider a rigid lid which imposes Le = ∞ and focus on the first internal Rossby
radius Ld. In the atmosphere, the two radii are much closer with Le ≈ 2000 km and
Ld ≈ 800 km.

Geostrophic scalings are introduced to capture the regime when rotational forces
are dominant. This regime is universally characterized by a small Rossby number
(26), but the limit can be approached in different ways distinguished by the scaling
of the Burger number

Bu =
L2

Ro
L2 =

Ro2

Fr2 , (63)

where, depending on context, LRo denotes the internal or external Rossby radius of
deformation. In the internal wave picture, the Froude number is given by (24). For
surface gravity waves in the shallow water framework, (63) can be seen as implicitly
defining the shallow water Froude number which, however, is not needed as an
independent scaling parameter.

Qualitatively, there are three different regimes. When the Burger number is small,
the flow is rotation dominated. The semi-geostrophic limit, discussed further below,
is representative of this regime. At Bu = O(1), buoyancy and rotation are both
important. The quasi-geostrophic limit is representative of this regime. For large
Burger numbers, the effects of stratification are dominant; we will not consider this
situation further. See, e.g., Babin et al. (2002) for a detailed exposition of the different
geostrophic scaling regimes.

We already took a detailed look at quasi-geostrophy in Section 2.5. There, we took
the rotating Boussinesq equations as the starting point and scaled with Bu = O(1)
where the Burger number was linked to the internal Rossby radius. We specialized
to single-layer and double-layer models in a second step. However, it is also possible
to derive a single-layer quasi-geostrophic equation from the rotating shallow water
equations. In this case, buoyancy comes from the free surface elevation, so the Burger
numbermust be based on the external Rossby radius. In order tomaintain geostrophic
balance at leading order, we must assume that variations in the surface elevation are
small, more precisely, are O(Ro). It is then possible to derive a quasi-geostrophic
potential vorticity by linearizing the shallowwater potential vorticity (60) as follows.
Taking a constant layer depth b = H with h � H and ζ � f , we can write

q =
f + ζ

H
1

1 + h/H
≈

f + ζ
H

(
1 −

h
H

)
≈

1
H

(
f − f

h
H
+ ζ

)
. (64)

Dropping the constant prefactor, recalling that ζ = ∆ψ, and using leading order
geostrophic balance in the form fψ ≈ gh, we obtain a new quasi-geostrophic poten-
tial vorticity

q = f − L−2
e ψ + ∆ψ . (65)
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This expression contains an extra stretching term L−2
e ψ not present in (50b) which

is a remnant of free surface effects. It is required on scales larger than the external
Rossby radius, even though the use of the quasi-geostrophic approximation on such
scales becomes questionable as changes in the Coriolis parameter are no longer
small.

Let us now turn our attention to the situation when the Burger number is small.
In this case, the most important distinguished limit has Bu = Ro. It is referred to
as the semi-geostrophic limit or the frontal geostrophic regime in the context of
frontal geostrophic adjustment (Zeitlin et al., 2003). The study of this limit goes
back to the geostrophic momentum approximation (Eliassen, 1948). The resulting
semi-geostrophic equations were rewritten by Hoskins and solved via an ingenious
change of coordinates (Hoskins, 1975; Cullen and Purser, 1984). They continue to
attract interest due to their connection to optimal transport theory and the resulting
possibility to make mathematical sense of generalized frontal-type solutions (Ben-
amou and Brenier, 1998; Cullen, 2008) and for the turbulence emerging from them
(Ragone and Badin, 2016). The geostrophic momentum approximation and Hoskins’
transformation inspired Salmon (1983, 1985) tomake corresponding approximations
directly to Hamilton’s principle so as to preserve geometrical structure and automati-
cally preserve conservation laws. Salmon’s approach is generalized in Oliver (2006);
corresponding results for stratified flow where the primitive equations serve as the
parent model are due to Salmon (1996) and Oliver and Vasylkevych (2016). Nu-
merical studies suggest that Salmon’s so-called L1 model is particularly robust and
accurate (Allen et al., 2002; Dritschel et al., 2016). A direct numerical comparison
of Hoskins’ semi-geostrophic equations with its generalized solution structure and
the L1 family of models which possess global classical solutions has not yet been
done.

Both semi-geostrophic and quasi-geostrophic models cannot support inertia-
gravity waves. Rossby waves are the only possible linear wave solutions; see, e.g.,
Vallis (2006) for quasi-geostrophic Rossby wave theory. Thus, even though quasi-
geostrophic models formally allow larger Burger numbers, their derivation imposes
a smallness assumption on buoyancy perturbations, so that it is a priori not clear
whether they are more accurate than any of the semi-geostrophic models for nearly
balanced flow even in the Bu = O(1) regime. Despite some preliminary attempts
aimed at exploring frontal scale turbulence (Badin, 2014), to our knowledge a sys-
tematic numerical study has not yet been done.

Mathematically rigorous justifications of the quasi-geostrophic splitting into fast
and slow modes have started with the work of Embid and Majda (1996) and Babin
et al. (1996, 1997). These ideas are extended and reviewed, for example, by Babin
et al. (2002), Majda (2003), Saint-Raymond (2010), and Cheng andMahalov (2013).
The book by Majda (2003), in particular, contains an elementary exposition of
averaging over fast waves which can be seen as a deterministic precursor of the
stochastic averaging in Section 5.3 below, and Dutrifoy et al. (2009) consider a
model for equatorial balance.

A full mathematical justification for any of the semi-geostrophic limits remains,
to the best of our knowledge, open.
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2.8 Equatorial scalings

Near the equator, the mid-latitude scalings discussed above break down as the rota-
tion vector Ω aligns with the horizontal. In the equatorial β-plane approximation,
f0 = 0 and the vertical component of the Coriolis force takes the form f = βy. Cor-
respondingly, themid-latitude notion of geostrophic balance breaks down. Thus, near
the equator the fluid ceases to be approximately constrained to quasi-twodimensional
motion. Moreover, at least in the atmosphere, different physics—moist processes and
deep convection—become dominant features of the observed dynamics. Whether
some notion of balance in the absence of moist processes persists up to and across
the equator is currently not well understood.

One instance where these difficulties manifest themselves is the weakening of
scale separation between different types of linear waves as compared to the mid-
latitudes. For example, linearizing the equatorial rotating shallow water equations
about a steady state with constant height field yields the dispersion curves for eigen-
modes plotted in Figure 1. In addition to the slow Rossby and Kelvin waves also
Yanai waves, which are mixed Rossby-gravity waves, are present. Here, only the
Rossby waves reflect the non-trivial Coriolis effect of the β-plane approximation
and are geostrophically balanced. However, Kelvin waves are important factors in
low frequency variations in the tropics.

As in themid-latitudes, it is natural to seek a scalingwhich is able to filter the faster
waves in some asymptotic limit. The mid-latitude definition of the Rossby number,
where Ro = U/( f L), becomes singular at the equator and cannot be used as a scaling
parameter. Noting that the characteristic length scales may be strongly anisotropic
near the equator, we may proceed as follows. Let c denote the characteristic wave

Rossby
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Fig. 1 Dispersion curves of linear equatorial waves of the rotating shallow water equations. Here
k is the wavenumber, on the scale

√
β/ce, and ω the frequency, on the scale

√
βce with β the

meridional gradient of the Coriolis parameter and ce =
√
gH the gravity wave speed for mean fluid

thickness H .
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speed. For example, in the shallow water approximation, c = ce =
√
gH while for

stratified quasi-geostrophic or Boussinesq flow, c = c1 = N H/π as introduced in the
previous sections. The meridional length scale Ly at which rotation is comparable
to wave propagation satisfies f Ly = c. Moreover, at this distance from the equator,
the vertical Coriolis parameter satisfies f = βLy . Solving for the meridional length
scale, we obtain

Ly =

√
c
β
, (66)

which can be regarded as an equatorial Rossby radius of deformation. In combination
with a typical zonal scale Lx , we may define an equatorial Rossby number as

Roeq =
U

f Lx
=

U
√

cβ Lx

. (67)

Its ratio with the Froude number Fr = U/c leads to the equatorial Burger number as
the horizontal aspect ratio

Bu =
L2
y

L2
x

=
Ro2

eq

Fr2 . (68)

It is typically small; ε =
√

Bu has been used as the main expansion parameter, for
example, by Majda (2003) and Chan and Shepherd (2013).

Assuming, in addition, a low vertical aspect ratio in the sense that H2 � Lx Ly ,
one obtains hydrostatic balance as for the mid-latitude scaling in Section 2.4 (Chan
and Shepherd, 2013). In order to obtain a hierarchy of balanced models from an
ε-expansion, they assume Fr = 1 and apply the slaving method ofWarn et al. (1995).
Balanced models in the tropics which do not assume the traditional approximation
were derived by Julien et al. (2006).

3 Variational principles and Hamiltonian mechanics

The inviscid Boussinesq equations and all of the simplified models discussed in
Section 2 are infinite dimensional Hamiltonian systems. In this section, we will
review several formally equivalent points of view: Hamilton’s variational principle
in which the equations of motion arise as stationary points of an action functional,
the Poisson formulation of Hamiltonian fluid mechanics, and, closely related, the
Nambu formulation.

The derivation of each of the models from Section 2 can be made systematic
through the use of Hamilton’s variational principle. This approach has multiple ad-
vantages: first of all, it allows to formulate a geometrical setting of the dynamics:
from the study of the Lagrangian density, one can study the continuous symmetries
of the system and, by Noether’s theorem, derive associated conservation laws; fur-
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ther, one can apply different dynamical approximations directly to the Lagrangian
density. When the approximations respect the continuous symmetries, the approx-
imated systems will possess analogous conserved quantities. Fluid Lagrangians, in
particular, have a special symmetry, the particle relabeling symmetry, which states
that the exchange of fluid labels does not affect the distribution of mass. The associ-
ated conserved quantity to this symmetry is the potential vorticity of the fluid. This
result shows that potential vorticity does not just appear from a skillful manipulation
of the equations of motion, but is instead a signature of a more fundamental property
of the system.

While Hamilton’s principle has been used to derive numerical methods for partial
differential equations (?), structure preserving numerical approximations for fluid
equations more readily arise by discretizing Poisson or Nambu brackets. While we
will not go into the numerical aspects here, we explain the Poisson and Nambu
formulations using the rotating shallow water equations as an example.

3.1 Variational Principles

The inviscid form of the Boussinesq equations (1) can be derived from a variational
principle as follows. For simplicity, we consider the case of a rigid lid upper boundary.
Let g denote the Lie algebra of vector fields on Ω satisfying the incompressibility
condition (1b) on the domain Ω with impermeability conditions on all boundaries.
Let η denote the flow of a time dependent vector field u ∈ g, i.e.,

η̇(a, t) = u(η(a, t), t) with η(a, 0) = a . (69)

Here and in the following, the letter a is used for Lagrangian label coordinates, while
x = η(a, t) denotes the corresponding Eulerian position at time t. As u is divergence
free, η is volume preserving. In the following, we shall write η̇ = u ◦ η for short.
Correspondingly, advection of density equation, (1c) with κ = 0, is equivalent to

ρ ◦ η = ρin , (70)

where ρin is the given initial distribution of the density.
Throughout the chapter, we use the letters L and ` (with appropriate subscripts

as necessary) to distinguish Lagrangians expressed in Lagrangian and Eulerian
quantities, respectively.With this notation in place, the Boussinesq Lagrangian reads

L(η, η̇; ρin) =
∫
Ω

R ◦ η · η̇ +
1
2
|η̇ |2 −

g

ρ0
ρin η3 da , (71)

where ∇ × R = 2Ω. We note that L can be expressed in terms of purely Eulerian
quantities as

L(η, η̇; ρin) =
∫
Ω

R · u +
1
2
|u |2 −

g

ρ0
ρz dx ≡ `(u, ρ) . (72)



Multi-Scale Methods for Geophysical Flows 23

The first term in the Lagrangian is the Coriolis term. It only contributes to the
symplectic form, but does not feature in the energy. The second and third terms are
the difference of kinetic and potential energies, as for simple mechanical systems.

We observe that L is invariant under compositions of the flow map with arbitrary
volume and domain preserving maps. This is known as the particle relabeling sym-
metry. For such Lagrangians, the Euler–Poincaré theorem for continua (Holm et al.
1998 or Holm et al. 2009, Theorem 17.8) asserts that the following are equivalent.

(i) η satisfies the variational principle

δ

∫ t2

t1

L(η, η̇; ρin) dt = 0 (73)

with respect to variations of the flow map δη = w ◦ η where w is a curve in g
vanishing at the temporal end points.

(ii) u and ρ satisfy the reduced variational principle

δ

∫ t2

t1

`(u, ρ) dt = 0 , (74)

where the variations δu and δρ are subject to the Lin constraints

δu = ẇ + ∇w u − ∇u w = ẇ + [u, w] , (75a)
δρ + w · ∇ρ = 0 , (75b)

with w as in (i).
(iii) m and ρ satisfy the Euler–Poincaré equation∫

Ω

(∂t + Lu )m · w +
δ`

δρ
Lw ρ dx = 0 (76)

for every w ∈ g, where L denotes the Lie derivative and m is the momentum
one-form

m =
δ`

δu
. (77)

In the language of vector fields in a region of R3, the Euler–Poincaré equation
(76) reads ∫

Ω

(
∂tm + (∇ × m) × u + ∇(m · u) +

δ`

δρ
∇ρ

)
· w dx = 0 (78)

for every w ∈ g. Due to the Hodge decomposition, the term in parentheses must be
a gradient, i.e.,

∂tm + (∇ × m) × u +
δ`

δρ
∇ρ = ∇φ . (79)

Noting that
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δ`

δu
= R + u and

δ`

δρ
= −

gz
ρ0
, (80)

re-defining the potential

φ = −
p
ρ0
−

g

ρ0
zρ −

1
2
|u |2 , (81)

and using the vector identity (∇ × u) × u = u · ∇u − 1
2 ∇|u |

2, we can write the
Euler–Poincaré equation for L as

∂tu + u · ∇u + 2Ω × u = −
1
ρ0
∇p −

gρ

ρ0
k . (82)

Thus, we recovered the inviscid form of the momentum equation (1a).
We remark that the traditional approach to variational derivation of the primitive

equations treats the geopotential as a Lagrange multiplier responsible for enforcing
the incompressibility constraint. Here, we build the constraint into the definition of
the configuration space. The gradient of the geopotential then appears naturally due
to the fact that the L2 pairing with divergence free vector fields determines a vector
field only up to a gradient. Both approaches, of course, lead to identical equations
of motion.

As the Boussinesq Lagrangian (71) is invariant under time translation, the model
possesses a conserved energy of the form

H =
∫
Ω

δ`

δu
· u dx − `(u, ρ) =

∫
Ω

1
2
|u |2 +

g

ρ0
ρz dx . (83)

The symmetry of the balance model Lagrangian under particle relabeling leads
to a material conservation law for the potential vorticity of the balance model. It
can be derived geometrically as follows. First note that the abstract Euler–Poincaré
equation (76) can be written

(∂t + Lu )m +
δ`

δρ
dρ = dφ, (84)

where d denotes the exterior derivative. Taking the exterior (wedge) product between
the exterior derivative of (84) and dρ, we find that

0 = d
(
(∂t + Lu )m +

δ`

δρ
dρ − dφ

)
∧ dρ

= (∂t + Lu )(dm ∧ dρ) − dm ∧ d(∂t + Lu )ρ
= (∂t + Lu )(dm ∧ dρ) , (85)

where we used the commutativity of Lie and exterior derivatives in the second
equality and the advection of ρ in the third equality. In three dimensions, we can
identify this conservation law with material advection of the scalar quantity
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q = ∗(dm ∧ dρ) , (86)

where ∗ denotes the Hodge dual operator. Indeed, writing µ = dx1 ∧ dx2 ∧ dz to
denote the canonical volume form, we have dm ∧ dρ = qµ, so that

0 = (∂t + Lu )(qµ) = µ (∂t + Lu )q + qLu µ . (87)

Since the flow is volume preserving and µ is non-degenerate, this proves that ∂tq +
Luq = 0, i.e., q is conserved on fluid particles.

Going back to the language of vector calculus, using expression (80) for the
momentum and writing ω = ∇ × u for the relative vorticity, we recover the familiar
expression for the Ertel potential vorticity,

q = (∇ × m) · ∇ρ = (2Ω + ω) · ∇ρ . (88)

We remark that the derivation above corresponds to taking the inner product of the
curl of theEuler–Poincaré equations (79)with∇ρ andmanipulating correspondingly;
the advantage of the abstract approach is that commuting exterior and Lie derivative
in traditional notation is not linked to any intrinsic operation, thus requires tedious
verification.

3.2 Variational model reduction

The variational principle which underlies the equations of motion can be used to
derive simplified models. All approximations are done at the level of the Lagrangian;
the simplified equations of motion then arise from the approximated Lagrangian in
a second step. When the approximations respect the symmetries of the Lagrangian,
the associated conservation laws, in our setting the conservation of energy and of
potential vorticity, will be preserved as well.

The use of the Hamilton principle to derive balance models was pioneered by
Salmon (1985, 1996). Salmon’s method was generalized by Oliver (2006) where
the approximate balance manifold is interpreted as a Dirac constraint induced by
a truncated change of coordinates. Structure preservation, however, does not imply
well-posedness of the initial value problem, as is evident in the numerical study
of Dritschel et al. (2016) which indicates a strong preference for Salmon’s so-
called L1-model. Çalık et al. (2013) prove global well-posedness for a large class
of variational balance models, including the L1-model. Gottwald and Oliver (2014)
give a justification of the general method to arbitrary order of approximation in a
finite dimensional model context, and Oliver and Vasylkevych (2013, 2016) show
that the variational approach is flexible enough to cover spatially varying Coriolis
functions and stratified flow, respectively.

The use of language from geometry and of the associated variational principles
is particularly advantageous when working in general curvilinear coordinates (Tort
and Dubos, 2014) which is crucial when working with global models but not as
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pertinent to the more theoretical questions we raise here and will not be discussed
further.

In a different line of research, Koide and Kodama (2012) and references cited
therein demonstrate that a stochastic version of the Hamilton principle can give
rise to various dissipative partial differential equations, including the Navier–Stokes
equations and higher order corrections to harmonic diffusion. A different approach is
taken by Holm (2015) who derives fully stochastic fluid equations from a variational
principle and discusses their conservation law structure.

3.3 Poisson formulation

All of the models above can also be cast in a Poisson or a Nambu formulation. We
illustrate this using the rotating shallow water equations as an example.

The rotating shallow water equations can be cast in a noncanonical Poisson
formulation (see, e.g., Shepherd 1990). Suppose F is an arbitrary functional of u
and h. Then

Ḟ = {F, H } (89)

with shallow water Hamiltonian H given by (59) and Poisson bracket

{F, H } =
∫
Ω

q F⊥u · Hu − Fu · ∇Hh + Hu · ∇Fh dx (90)

where we use subscripts to express functional derivatives. A Poisson bracket is
skew-symmetric, satisfies the Leibniz rule

{ f , gh} = { f , g} h + { f , h} g (91)

and the Jacobi identity

{{ f , g}, h} + {{g, h}, f } + {{h, f }, g} = 0 . (92)

The shallow water equations (58) are recovered by substituting point evaluations of
h and hu for the functional F. The Poisson formulation can also be written in the
form

Ḟ =
∫
Ω

FT
ξ JHξ dx , (93)

where ξ = (u, h) and J is the noncanonical Poisson operator

J = −

(
qJ ∇
∇T 0

)
. (94)

Here J denotes the canonical 2 × 2 symplectic matrix Jw ≡ w⊥ for any w ∈ R2 and
we think of ∇ as a column operator.
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From (94) it is possible to find theCasimir invariants of the system, i.e., functionals
C satisfying

{F,C} = 0 (95)

for every functional F. Expressing the bracket in terms of the Poisson operator
defined via (93) and (94), we see that the Casimirs are precisely the functionals
which belong to the kernel of J, i.e.,

JCξ = 0 . (96)

When J is invertible, the Casimirs are just the constant functionals with respect to
ξ . For the noncanonical Poisson brackets of fluid dynamics, however, J typically
has a nontrivial kernel, i.e., nontrivial Casimirs. Here, for the rotating shallow water
equations, it can be shown that there is a class of Casimirs of the form

C =
∫
Ω

h γ(q) dx , (97)

where γ is an arbitrary function of potential vorticity, not to be confused with the
ageostrophic vorticity. Indeed, by the chain rule,

Cu = h γ′(q) qu = −∇⊥γ′(q) , (98a)
Ch = γ(q) − q γ′(q) , (98b)

so that, using (94),

JCξ =

(
−q∇ γ′(q) − ∇ γ(q) + ∇(q γ′(q))

∇ · ∇⊥γ′(q)

)
=

(
0
0

)
. (99)

Hence, the Casimir condition (97) is satisfied. The conservation law for mass corre-
spond to γ = 1, while γ(q) = q yields

d
dt

∫
Ω

h q dx =
d
dt

∫
Ω

ζa dx = 0 , (100)

where the first equality is due to (60). By Stokes’ theorem, (100) corresponds to the
usual conservation of circulation, which implies conservation of potential vorticity
(60). More generally, the choice γ(q) = qn corresponds to the conservation of the
nth order enstrophy.

We remark that the Poisson formulation above can be cast into a mixed Eulerian–
Lagrangian form that can be seen as a precursor to numerical particle or particle-mesh
schemes (Bokhove and Oliver, 2006).
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3.4 Nambu formulation

Even if the Hamiltonian formulation of the equations of motion for fluid flows is
useful to address questions regarding the geometry of the system, including the study
of continuous symmetries and associated conservation laws through Noether’s the-
orem, a systematic method for the derivation of the noncanonical Poisson brackets
is still generally lacking and the derivation often relies on guesswork. An alternative
formulation of dynamics was proposed by Nambu (1973), who suggested an exten-
sion of Hamiltonian dynamics which is based on Liouville’s theorem and, differently
from classical Hamiltonian mechanics, makes use of several conserved quantities,
i.e. the Casimirs of the system, which can be considered as additional Hamiltoni-
ans and define manifolds whose intersection determine the trajectory in state space.
In analogy to Poisson brackets in Hamiltonian mechanics, the resulting dynamics
is determined by the Nambu bracket. A Nambu bracket is an n-linear map acting
on smooth functions on a manifold that is completely antisymmetric, satisfies the
Leibniz rule

{ f1, . . . , fn−1, gh} = { f1, . . . , fn−1, g} h + { f1, . . . , fn−1, h} g (101)

and the Jacobi identity

{{ f1, . . . , fn−1, g1}, g2, . . . , gn} + {g1, { f1, . . . , fn−1, g2}, g3, . . . , gn} + . . .

+ {g1, . . . , gn−1, { f1, . . . , fn−1, gn}} = { f1, . . . , fn−1, {g1, . . . , gn}} . (102)

A general theory of Nambu–Poisson structures was outlined by Takhtajan (1994).
For the rotating shallow water equations it is convenient to pass from (u, h) to

(ζ, δ, h). Using the chain rule for functional derivatives,

Fu = −∇
⊥Fζ − ∇Fδ (103)

whileFh remains unchanged.With (103), the Poisson bracket for the rotating shallow-
water equations (90) takes the form of the sum of two Poisson brackets and a Nambu
bracket (Salmon, 2005, 2007), i.e.

Ḟ = {F, H }δδ + {F, H }ζζ + {F, H }ζδh (104)

with

{F, H }δδ =
∫
Ω

q∇⊥Fδ · ∇Hδ dx , (105a)

{F, H }ζζ =
∫
Ω

q∇⊥Fζ · ∇Hζ dx , (105b)

and
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{F, H }ζδh =
∫
Ω

q
(
∇Fδ · ∇Hζ − ∇Hδ · ∇Fζ

)
+ ∇Fδ · ∇Hh − ∇Hδ · ∇Fh dx .

(105c)

The subscripts indicate the variables entering the functional derivatives in the brack-
ets. Each of these brackets is antisymmetric and has Casimir functionals given by the
kernel of its associated Poisson operator, i.e., satisfy (97). Once again, of particular
interest are the n moments

Zn =
1

2 + n

∫
Ω

h qn+2 dx =
1

2 + n

∫
Ω

ζn+2
a

hn+1 dx , (106)

where n = 0 yields the usual enstrophy. Using (106), the Poisson brackets in (104)
can be rewritten as

{F, H }δδ = {F, H, Zn}δδζ

=
1

3 + 2n

∫
Ω

1
qn

[
J (Fµ, Hµ) (Zn)ζ + cyc(F, H, Zn)

]
dx , (107a)

{F, H }ζζ = {F, H, Zn}ζζζ

=
1

3 + 2n

∫
Ω

1
qn

[
J (Fζ, Hζ ) (Zn)ζ + cyc(F, H, Zn)

]
dx , (107b)

and

{F, H }ζδh = {F, H, Zn}ζδh

= −
1

1 + n

∫
Ω

1
qn

( ∂xFµ ∂xHζ − ∂xHµ ∂xFζ
∂xq

∂x (Zn)h + cyc(F, H, Zn)

+
∂yFµ ∂yHζ − ∂yHµ ∂yFζ

∂yq
∂y (Zn)h + cyc(F, H, Zn)

)
dx , (107c)

where “cyc” denotes expressions derived from the previous term by all cyclic per-
mutations of the indicated symbols.

The sum of the three brackets comprises the complete Nambu bracket for the
shallow water equations. This formulation has the advantage that it is easily dis-
cretized. The resulting numerical schemes have excellent conservation properties
(Salmon, 2005). Note that in general, each Poisson bracket corresponds to an infinite
number of distinct Nambu brackets, depending on the set of Casimirs which are
used (Chatterjee, 1996). This non-uniqueness of the Nambu formulation implies the
existence of different conservative numerical schemes for the same set of equations,
allowing substantial flexibility for the problem under consideration, for example for
the elimination of the singularities emerging from the terms (∂xq)−1 and (∂yq)−1 in
the third bracket through a rewriting of the brackets before discretization.

For theNambu brackets for other geophysical fluid equations, includingRayleigh–
Bénard convection, see Blender and Badin (2015).
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4 Dissipation, turbulence, and nonlinear waves

4.1 Viscosity and dissipation

So far, we have looked at a variety of models for geophysical flow without dissipa-
tion. However, consistent modeling of viscous dissipation and boundary friction is
essential for ensuring proper distribution of energy across scales. Including frictional
forces is a non-trivial problem, in particular when looking at effective models for
large scale motion and for numerical simulation where physical dissipation ranges
are typically far smaller than what can be numerically resolved.

At the microscopic level, the molecular kinematic viscosity for geophysical fluid
flow is modeled as a Newtonian viscosity. Likewise, buoyancy is diffusive with a
harmonic diffusion operator, as indicated in our initial formulation of the Boussinesq
equations (1). While the viscosity coefficients are extremely small, their presence
is important on a mathematical level due to the regularizing or smoothing effect.
Moreover, small bulk viscosities and frictional layers, though thin, influence the
large scale flow even in the limit of vanishing viscosity, which gives good reasons
to take viscous effects into account even for laminar flow. An example is uniformly
enhanced Lagrangian drift from an oscillatory layer (Julien and Knobloch, 2007).
An early overview on the linear stability of stratified flowwith viscosity can be found
in Emanuel (1979, 1984).

Crucially, enstrophy or energy cascades in geostrophic or fully developed three-
dimensional turbulence require an energy sink at the small scales. Thus, energetically
consistent models require dissipation usually referred to as “turbulent viscosity” or
“eddy viscosity.” Finally, dissipation is also implicitly or explicitly required to ensure
the stability of numerical schemes.

The simplest ad hoc approach adds dissipation to the horizontal and vertical
velocities with different viscosity coefficients (Pedlosky, 1987). This results in the
following form of the viscous rotating Boussinesq equations

Dtuh + (2Ω × u)h = −
1
ρ0
∇hp + νh ∆uh , (108a)

Dtw +Ω
⊥
h · uh = −

1
ρ0

∂zp −
gρ

ρ0
+ νz ∆w (108b)

∇ · u = 0 , (108c)
Dt ρ = κ ∆ρ, (108d)

where νh and νz are coefficients of horizontal and vertical eddy viscosity, respectively.
In single-layer simplified models such as the barotropic quasi-geostrophic equa-

tion (50), dissipation comes in the form of bottom drag as the main energy sink and
viscosity (or hyperviscosity) as the main enstrophy sink. Under the β-plane approx-
imation f = f0 + βy, the dynamics can be written in terms of the relative vorticity
ζ = ∆ψ, so that
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∂t ζ + ∇
⊥ψ · ∇ζ + β ∂xψ = F − λ ζ + ν ∆ζ , (109)

where the terms on the right hand side are forcing F, linear (Rayleigh) damping
to model bottom friction with parameter λ describing an inverse time scale for
the vorticity decay due to bottom drag, and Newtonian viscosity with parameter
ν. In a numerical simulation of a forced system, viscosity is typically replaced by
hyperviscosity to remove enstrophy without depleting energy across most resolved
scales. To model geostrophic turbulence, both types of dissipation are necessary. A
more detailed discussion of this topic is provided in [provide proper reference to
M3 chapter in this volume].

The relevance of the form of viscosity for the mathematical theory is highlighted
by the fact that only very recently the well-posedness of the primitive equations with
only horizontal viscosity has been established (Cao et al., 2016). For full viscosity in
all directions much more is known, in particular the asymptotic stability of (nearly)
geostrophically balanced dynamics was shown in Temam and Wirosoetisno (2010).
Inclusion of at least some kind of dissipation is crucial for these results, but is not
necessarily physically consistent nor suitable as a model for energy dissipation on
these scales, which is the motivation for the study in Olbers and Eden (2013).

As mentioned, there are no universally accepted criteria for the correct form
of dissipation, in particular in connection with numerical schemes. However, a
noteworthy prominent approach motivated also by the problem of unfeasible small
scale resolution in practice is “Large Eddy Simulation” (LES) as discussed, e.g., in
Sagaut (2006).

In the (next) simplest form, the subgrid closure and parametrization problem of
viscosity yields an effective “filtered” Navier-Stokes model for the velocity vector u
in which the turbulent viscosity term reads

−∇ · (νe (u) S(u)) , (110)

where S(u) = 1
2 (∇u+ (∇u)T ) is the rate-of-strain tensor and νe (u) the eddy viscos-

ity. For instance, Smagorinsky (1963) considers νe (u) = C |S(u) | with constant C.
Variants that are more faithful in preserving the turbulent kinetic energy spectrum
can be found in Schaefer-Rolffs and Becker (2013), Schaefer-Rolffs et al. (2015), and
Trias et al. (2015).

On a different level, we note that including viscous terms necessitates additional
boundary conditions. This in turn yields viscous so-called Ekman boundary layers,
which feed back onto the large-scale motion. We also point out that balancing eddy
buoyancy fluxes and viscous effects may necessitate additional scaling anisotropy
(Grooms et al., 2011).

Concluding this discussion we emphasize that the presence of dissipation requires
to include driving mechanism in order to maintain non-trivial flow. The precise
form of the source term is yet another non-trivial modeling issue. Simple idealized
configurations are discussed in [provide proper reference to M3 chapter in this
volume]; for a discussion in a more realistic context, see, for example, Olbers and
Eden (2013).
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4.2 Nonlinear waves and dynamical systems methods

Wave phenomena at different scales organize the structure of geophysical flows and
play a vital role for the transport of energy. From a bifurcation theory viewpoint,
linear waves raise expectations for nonlinear wave phenomena. The only nonlinear
terms in the standard models as introduced above stem from the material deriva-
tive. Geostrophic balance partly turns these into a Poisson bracket nonlinearity,
which vanishes for monochromatic plane waves. For this reason, the barotropic
quasi-geostrophic equation (50) possesses linear Rossby waves with unconstrained
amplitude as exact nonlinear solutions and, more generally, special plane waves can
sometimes be exact solutions of nonlinear fluid equations (Majda, 2003; Julien and
Knobloch, 2007). However, the barotropic quasi-geostrophic equations are special
in this regard. For its nonlinear parent models, waves are not of plane form but
nonlinearly selected, even in the unstratified setting of the rotating shallow water
equations.

In a different manner, baroclinic instability relates to bifurcations from Rossby
waves via amplitude equations.A discussion of this for a two layermodel can be found
in Pedlosky (1987). On the level of the equatorial shallow water wave equations, the
amplitude equation approach to nonlinear phenomena has been exploited by Boyd in
the 1980s to identify various modulated Rossby and Kelvin waves, cf. Boyd (1980)
and the more recent Boyd (2002).

However, nonlinear waves in geophysical flows received much less attention after
the period of seminal progress in the 1980s. In the past decade the subject has
regained momentum in particular from a more mathematical viewpoint (Zeitlin
et al., 2003; Bouchut et al., 2005; Constantin, 2013; Hsu, 2014); see Khouider et al.
(2013) for a recent review. A major motivation for the study of nonlinear waves is
their role in balanced flow, energy transport, and wave breaking in the form of shocks
for inviscid models (Zeitlin et al., 2003).

The vast majority of research considers idealized planar or cylindrical geome-
try and either no viscosity or simple molecular dissipation. The effect of viscosity
and Ekman layer formation has been mathematically studied in Dalibard and Saint-
Raymond (2010) concerning existence and stability of steady states in a certain
scaling limit of fast rotation and small layer thickness. Rossby–Haurwitz waves
are explicit nonlinear spherical waves which received increasing attention recently
(Thuburn and Li, 2000; Callaghan and Forbes, 2006; Ibragimov, 2011; Schubert
et al., 2009; Smith and Dritschel, 2006; Boyd and Zhou, 2008). An “intermediate”
model accounting for geometric terms from the Mercator projection has been pro-
posed in Bates and Grimshaw (2014) and provides a possible connection between
planar and spherical nonlinear wave phenomena.

Another aspect of nonlinear waves is the emergence of shocks in frontogenesis
and the adjustment problem. With attention to energy transfer in the geostrophic
adjustment problem, this has been studied in Blumen and Wu (1995) and more re-
cently by Reznik (2015), where additional references can be found. In a simplified
one-dimensional setting of the shallow water equations, an essentially explicit ap-
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proach to fronts has been given in Plougonven and Zeitlin (2005), also see [provide
reference to Chapter L2 in this volume].

While dynamical systems methods have been originally developed for finite di-
mensional problems, dissipative ormore generally parabolic partial differential equa-
tions often have a finite dimensional character, which allows for application of tools
from generic dynamical systems theory. For instance, compactness and viscosity
allow to infer the existence of an invariant and attracting inertial manifold as proven
for the spherical Navier–Stokes equations in Temam and Wang (1993).

For domains with one large or unbounded direction the spatial dynamical systems
perspective pushed nonlinear wave theory, in particular regarding stability, for pro-
totypical parabolic equations in the past decades; see, e.g., Kapitula and Promislow
(2013), Sandstede (2002), Meyries et al. (2014), and references therein. In the much
more prominent inviscid and dispersive case, the presence of conserved quantities
gives the mathematical theory a different character, especially concerning stability.
We refer to the recent study of Balmforth et al. (2013).

In general, the nonlinear response of a nonlinear parabolic system to linear in-
stabilities can be cast in terms of reduced equations which filter different aspects.
On extended domains, the aforementioned modulation equations describe the slow
dynamics over large scales near onset; rigorous error estimates have been derived in
several contexts (e.g. Schneider, 1994; Doelman et al., 2009). For parabolic systems,
the classical center manifold reduction provides a conjugacy of the full dynamical
system to a decoupled product of trivial linear flow and a lower dimensional non-
linear part (unique up to exponential error) that is more amenable to analysis, in
particular via normal forms (Haragus and Iooss, 2011). More selective filtering of
bifurcating solutions can be cast in terms of Lyapunov–Schmidt reduction, a standard
tool to prove existence of non-trivial bifurcating solutions in amplitude equations or
truncated normal forms on a center manifold (Vanderbauwhede, 2012). Indeed, the
full flow of a reduced equation may be an invalid approximation (over infinite time
horizons), but selected solutions may still have exact counterparts in the full system.
Viscous regularization can also act as a filter to reduce the complexity of bifurcations
at onset, such as resonance phenomena and allow to determine nonlinear stability
for objects other than single shocks (Beck et al., 2010).

The bifurcation theory viewpoint can be exploited numerically by using contin-
uation algorithms to compute branches of nonlinear solutions, their stability and
bifurcations and thus, for these solutions, offers an alternative to direct numerical
simulation. Dedicated software packages include AUTO1, LOCA2, and pde2path3.

In the context of geophysical flows, bifurcations naturally occur in compartment
models or coupled ocean atmosphere systems, e.g. explored numerically in Dijkstra
et al. (2014). A review of bifurcation analyses can be found in Simonnet et al. (2009)
and more broadly for nonlinear waves in fluid turbulence in Kawahara et al. (2012).
Co-existing branches of equatorial nonlinear waves have been found numerically by

1 http://indy.cs.concordia.ca/auto/
2 http://www.cs.sandia.gov/loca/
3 http://www.staff.uni-oldenburg.de/hannes.uecker/pde2path/
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Boyd (2002); Boyd and Zhou (2008). Towards nonlinear waves in layered models,
an approach that simplifies nonlinear interactions is to retain only resonance triads.
A recent study of this type can be found in Bates and Grimshaw (2014).

5 Stochastic Model Reduction

Recent advances in systematic stochastic climate modeling (Majda et al., 2008;
Franzke et al., 2005, 2015; Franzke and Majda, 2006; Monahan and Culina, 2011)
provided new insights into the structural form of the terms accounting for the in-
teraction between resolved and unresolved processes. The approach is based on the
adiabatic elimination of fast variables (Kurtz, 1973; Papanicolaou, 1976; Gardiner,
2009) and demonstrates the necessity of nonlinear damping and state-dependent
noise; previously, only linear damping and additive noise have been considered.
State-dependent noise is known to be responsible for noise-induced drifts (Gar-
diner, 2009), which has the potential to ameliorate some of the know biases. The
Mori–Zwanzig formalism (e.g. Zwanzig, 2001; Chorin et al., 2000; Wouters and
Lucarini, 2013; Gottwald et al., 2017) predicts the emergence of memory terms in
reduced-order models. Memory terms are rarely considered in current parametriza-
tion schemes. Thus, there is an urgent need to develop a systematic framework for
the interaction between resolved and unresolved processes and their representation
in numerical climate models.

In the context of climate science, stochastic models were first proposed by Has-
selmann (1976). A major advance came with the development of the stochastic mode
reduction strategy, which is described in detail in Majda et al. (2001, 2008) and is ap-
plied, for example, in Majda et al. (2001, 2002, 2003), Franzke et al. (2005), Franzke
and Majda (2006), and Franzke et al. (2015). Stochastic mode reduction starts from
the equations used in a climate model, with an external forcing, a linear operator
and a quadratic nonlinear operator. Splitting the state vector into slow and fast com-
ponents, assuming scale separation, and replacing the quadratic self-interaction of
the fast modes by a stochastic process leads to a stochastic differential equation
for the slow variables alone by using the stochastic mode reduction procedure (see
next subsection). By doing so, structurally new terms arise such as a deterministic
cubic term which acts predominantly as nonlinear damping and both additive and
multiplicative noise terms. The multiplicative noise and the cubic term stem from
the nonlinear interaction between the resolved and unresolved modes. Rigorous jus-
tification is possible only in the limit of time scale separation, though in practice the
reduced order models perform well even in the case of moderate or no time scale
separation (Majda et al., 2008; Dolaptchiev et al., 2013; Stinis, 2006; Franzke et al.,
2005; Franzke and Majda, 2006). How to do this in a systematic fashion is the topic
of the next subsection.
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5.1 Basic setup

To illustrate the basic idea of the stochastic mode reduction strategy, we consider the
abstract dynamical system

dz
dt
= F + Lz + B(z, z) , (111)

where z is the state vector, F denotes the forcing, L a linear and B a quadratic
nonlinear operator. For convenience, we assume that F is constant in time; for time
dependent forcing, see Franzke (2013). The linear operator L contains, in particular,
advection, the effect of topography, and linear damping. The operator B conserves
energy and satisfies the Liouville property, i.e., the dynamical system with only B on
its right hand side ismeasure preserving (for details, see Franzke et al. 2005).We note
that important simplifiedmodels for geophysical flow such as the barotropic vorticity
equation or the quasi-geostrophic equations can be studied in this framework; see
Franzke et al. (2005) for the former and Franzke and Majda (2006) for the latter.

The state vector z = (x, y) is now split into slow modes x and fast modes y.
This decomposition is typically done using Empirical Orthogonal Function (EOF)
analysis (Franzke et al., 2005; Franzke and Majda, 2006) or Principal Interaction
Patterns (PIP) (Kwasniok, 2004; Crommelin and Majda, 2004). These patterns now
constitute a complete orthonormal basis and can be used as basis functions in the
same way as Fourier modes are used for spectral models (Holton and Hakim, 2012).
Furthermore, because the leading EOFs typically also decay the slowest (Franzke
et al., 2005; Franzke and Majda, 2006) it is sensible to use the leading EOFs as the
resolved modes. Now we can rewrite (111) in terms of slow and fast modes:

dx
dt
= Fx + Lxxx + Lxy y + Bxxx (x, x) + Bxxy (x, y) + Bxyy (y, y) , (112a)

dy
dt
= Fy + Lyxx + Lyy y + Byxx (x, x) + Byxy (x, y) + Byyy (y, y) . (112b)

We use here the following notation: the first superscript denotes the variable (left
hand side time derivative) the corresponding right hand side term acts on (e.g. Fx

acts on x), the second and third superscripts denote the variables whose actions and
interactions induce a tendency.

In order to carry out the stochastic mode reduction strategy, we introduce a small
parameter ε which quantifies the time scale separation between the slow modes
x and fast modes y. The parameter ε can also be interpreted as the ratio of the
autocorrelation time scale between the slow and the fast modes. We posit

dx
dt
= Fx + Lxxx + Bxxx (x, x) +

1
ε

(
Lxy y + Bxxy (x, y) + Bxyy (y, y)

)
, (113a)

dy
dt
=

1
ε

(
Fy + Lyxx + Lyy y + Byxx (x, x) + Byxy (x, y)

)
+

1
ε2 Byyy (y, y) .

(113b)
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While the introduction of the time scale parameter ε in front of some of the tendency
terms is somewhat arbitrary and currently mainly based on physical intuition, our
current research aims at putting it on a more systematic footing by using multi-
scale asymptotics for geophysical flows (Klein, 2010; Shaw and Shepherd, 2009;
Dolaptchiev and Klein, 2013).

So far, the equations are fully deterministic.We nowmake the following stochastic
modeling assumption: we assume that deterministic nonlinear terms involving x are
mixing with sufficiently fast decay of correlation so that the nonlinear term involving
only the fast modes Byyy (y, y) can be represented by a stochastic term (Majda et al.,
1999, 2001), i.e., we approximate

1
ε2 Byyy (y, y) dt ≈ Stochastic Process . (114)

The intuition is that this term is effectively delta-correlated on the slow time scale.
It is illustrative to assume that the stochastic process has the form of an Ornstein–
Uhlenbeck (OU) process

1
ε2 Byyy (y, y) dt ≈ −

Γ

ε2 y dt +
σ

ε
dW , (115)

where Γ and σ are positive definite matrices and W is a vector-valued Wiener
process. However, the stochastic process does not need to be explicitly specified as
shown by Franzke et al. (2005). Inserting (115) into the deterministic model (113),
we obtain a system of stochastic differential equations

dx =
(
Fx + Lxxx + Bxxx (x, x) +

1
ε

(
Lxy y + Bxxy (x, y) + Bxyy (y, y)

))
dt ,

(116a)

dy =
( 1
ε

(
Fy + Lyxx + Lyy y + Byxx (x, x) + Byxy (x, y)

)
−
Γ

ε2 y
)

dt +
σ

ε
dW .

(116b)

We interpret the SDE in (116b) in the sense of Itô. In general, there are two main
ways of evaluating the stochastic integrals featuring in the integral form of an SDE,
Itô and Stratonovich. From the mathematical perspective, both interpretations are
different but interchangeable as an Itô integral can always be rewritten in terms
of a Stratonovich integral and vice versa. In modeling, however, the SDE usually
arises from a more complicated process or dynamical system in a certain asymptotic
limit. In this case, an Itô differential equation represents the situation where the
limit dynamics has vanishing autocorrelation while a Stratonovich interpretation
represents the situation when the limit dynamics retains finite autocorrelation; see,
e.g., the discussion in Moon and Wettlaufer (2014). In our situation, the modeling
assumption already entails the idea that terms which cause finite autocorrelations
are kept in the deterministic part of (116b) so that the noise term only represents
the asymptotically uncorrelated parts. Thus, the noise term in (116b) should be
interpreted in the sense of Itô. We remark that from the technical perspective, an Itô
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process has theMartingale property which greatly simplifies working with stochastic
time integrals. However, functions of Itô processes cannot be differentiated using
the normal chain rule as an extra term arises. The stochastic chain rule is called Itô’s
Lemma and gives rise to the parabolic term in the Fokker–Planck and Kolmogorov
backwards equations which we will encounter in the next section; for a background
on these concepts, see, e.g., Gardiner (2009).

5.2 Slow dynamics via the Kolmogorov backward equation

In the following, we seek an effective equation for the slowmodes of the system (116)
in the limit ε → 0. The method uses adiabatic elimination of fast variables (Kurtz,
1973; Papanicolaou, 1976; Pavliotis and Stuart, 2008) and has been pioneered in the
present setting by Majda et al. (1999, 2001). The strategy is the following. Every
Itô stochastic differential equation, in particular our system (116), has an associated
Kolmogorov backward equation (KBE). (For deterministic systems, ODE or PDE,
this equation also exists and is usually referred to as the Liouville equation.) It is
a parabolic PDE that describes the backward-in-time evolution of the probability
distribution function of the system for a given hit probability. While it is rarely
possible to solve KBEs numerically in more than a small number of dimensions,
the KBE can be useful as an intermediate step in the derivation of a model that is
again practically computable. Here, we will subject the KBE to classical multiple
scales asymptotics with respect to the small parameter ε. The derivation is successful
if the leading nontrivial contribution to the asymptotic series takes the form of a
Kolmogorov backward equation in the slow variable x only, which can be rewritten
and simulated as an effective Itô stochastic differential equation.

We start by recalling that for an Itô SDE in the abstract form

dx(t) = a(x, t) dt + B(x, t) dW (t) , (117)

the corresponding Kolmogorov backward equation reads

∂p(x, t)
∂t

= −

N∑
i=1

ai (x, t)
∂p(x, t)
∂xi

−
1
2

N∑
i=1

N∑
j=1

Di j (x, t)
∂2p(x, t)
∂xi∂x j

(118)

with

Di j (x, t) =
M∑
k=1

bik (x, t) bjk (x, t) . (119)

A derivation and general introduction can be found, for example, in the book by
Risken (1996). Applying this notion to our system in the specific form (116), we
obtain

−
∂%ε

∂s
=

1
ε2 L1%

ε +
1
ε
L2%

ε + L3%
ε , (120a)
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where the operators Li are given by

L1 =
∑
j

(
−γj yj

∂

∂yj
+

1
2
σ2

j

∂2

∂y2
j

)
, (121a)

L2 =
∑
j,k

(
Lxy
jk
yk +

1
2

∑
l

(
2 Bxxy

jkl
xk yl + Bxyy

jkl
yk yl

)) ∂

∂x j

+
∑
j,k

(
Lyx
jk

xk + Lyy
jk

yk +
1
2

∑
l

(
Bxyy
jkl

xk xl + 2 Byyx
jkl

yk xl
)) ∂

∂yj
, (121b)

L3 =
∑
j

(
Fj

∑
k

Lxx
jk xk +

1
2

∑
kl

Bxxx
jkl xk xl

)
∂

∂xk
. (121c)

The adiabatic elimination of fast variables now proceeds by performing an asymp-
totic expansion of the KBE (120) in powers of ε. We shall sketch only the main steps
and refer the reader to the original work by Majda et al. (2001) for full details. To
begin with, we expand %ε as a formal power series, writing

%ε = %0 + ε %1 + ε
2 %2 + . . . (122)

Inserting this expansion into (120) and selecting terms of equal order in ε, we obtain
a sequence of equations, the first three of which read

L1%0 = 0 , (123a)
L1%1 = −L2%0 , (123b)

L1%2 = −
∂%0
∂s
− L3%0 − L2%1 . (123c)

The structure of these equations tells us that we need to find suitable solvability
conditions. Equation (123a) implies that %0 belongs to the null space of L1, i.e.
P%0 = %0, where P is the expectation with respect to the invariant measure of the
OU process and L1 is the generator of the OU process. Hence, (123a) shows that
%0 is independent of the fast variables y, thus represents an invariant measure for
the fast dynamics in the full SDE. It is easy to see that (123a) and (123b) satisfy the
solvability conditions. Now we want to sketch the derivation of dynamic equation
for %0 which can be derived from the solvability condition for equation (123c).

Taking the expectation of (123b), we obtain the following solvability condition

PL2%0 = PL2P%0 = 0 . (124)

If this equation were not be satisfied, the fast modes would induce fast effects on the
slow modes. This leads to the solution of (123b):

%1 = −L
−1
1 L2P%0 . (125)
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By inserting this expression into (123c) and taking the expectation, we get the
solvability condition for %2:

−
∂%0
∂s
= PL3P%0 − PL2L

−1
1 L2P%0 . (126)

In the limit that ε → 0, %ε converges to %0, the solution of equation (126), see
Theorem 4.4 in Majda et al. (2001) and also Kurtz (1973).

The Kolmogorov backward equation (126) can now be transformed back into an
effective stochastic differential equation which is computable. The resulting Itô SDE
has the form

dx =
(
F + Lx + B(x, x) + M (x, x, x)

)
dt + σA dW A + σW (x) dWM , (127)

where full expressions for the different terms can be found in Majda et al. (2001).
Equation (127) depends only on the slow variables x and approximates the statistics
of the slow variables of the full SDE (116). We note that its right hand side contains
structurally new terms such as a cubic nonlinearity which generally acts as a damping
term but still allows some unstable nonlinear directions (Majda et al., 2009), as well
as additive and multiplicative noise terms. The multiplicative noise term arises from
the nonlinear interaction between resolved and unresolved modes while the additive
noise is the results of nonlinear interactions between unresolvedmodes and the linear
interaction between resolved and unresolved modes, respectively.

5.3 Direct Averaging

It is instructive to illustrate the stochastic mode reduction procedure by working
directly on the equations without the use of the KBE for a special case which allows
the direct analytic derivation of the effective equations. For this purpose we use
the following nonlinear triad stochastic interaction equations (Majda et al., 1999)
by using the method of averaging (Kurtz, 1973; Papanicolaou, 1976; Monahan and
Culina, 2011):

dx1(t) =
b1
ε

x2(t) y(t) dt (128a)

dx2(t) =
b2
ε

x1(t) y(t) dt (128b)

dy(t) =
b3
ε

x1(t) x2(t) dt −
γ

ε2 y(t) dt +
σ

ε
dW (t) (128c)

Now we formally solve the equation for y:

y(t) = e−
γt

ε2 y +
b3
ε

∫ t

0
e−

γ(t−s)
ε2 x1(s) x2(s) ds + h(t) (129)
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where
h(t) =

σ

ε

∫ t

0
e−

γ(t−s)
ε2 dW (s) (130)

We note that (129) contains a time integral which can be interpreted as a memory
kernel (Gottwald et al., 2017). The existence of a memory kernel is already predicted
in the Mori–Zwanzig formalism (Mori, 1965; Zwanzig, 1973, 2001; Wouters and
Lucarini, 2013; Chorin et al., 2000).

However, in the case of time scale separation so that ε → 0, the above term
becomes Markovian (Majda et al., 2001) by performing integration by parts:

y(t) → ε
b3
γ

x1(t) x2(t) + h(t) (131)

and
h(t) → ε

σ

γ
dW (t) (132)

If we now insert equations (131) and (132) into (128a) and (128b), we obtain

dx1(t) =
b1b3
γ

x1(t) x2
2(t) dt +

b1σ

γ
x2(t) ◦ dW (t) , (133a)

dx2(t) =
b2b3
γ

x2
1(t) x2(t) dt +

b2σ

γ
x1(t) ◦ dW (t) , (133b)

which must to be interpreted in the Stratonovich sense as indicated by the ◦ in
front of the Wiener process. The Stratonovich interpretation arises because the
integration performed in (130) introduces non-negligible autocorrelation. However,
we can transform the Stratonovich SDE into Itô form, picking up an additional
noise-induced drift term:

dx1(t) =
b1b2 σ

2

2γ2 x1(t) dt +
b1 b3
γ

x1(t) x2
2(t) dt +

b1 σ

γ
x2(t) dW (t) , (134)

dx2(t) =
b1b2 σ

2

2γ2 x2(t) dt +
b2 b3
γ

x2
1(t) x2(t) dt +

b2 σ

γ
x1(t) dW (t) . (135)

This reduced model has cubic nonlinearity and multiplicative noise. Future research
will explore the effects of the memory kernel since in the climate system we do not
have any obvious time scale separations.

6 Outlook

In this chapter we provided a brief overview of some basic GFD issues and also dis-
cussed some current research themes like variational balance models and stochastic
mode reduction. In our future research we plan to follow these three broad research
directions: (i) specify the limits of validity of asymptotic regimes and the interaction
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of different scale regimes, (ii) examine how dynamic properties such as stability,
bifurcating nonlinear waves, and nonlinear interactions out of linear waves persist
across model hierarchies, (iii) include effective dissipation in scaling analysis and the
role of eddy dissipation, (iv) study model hierarchies to develop parameterizations
for processes not represented at a coarse level. Here we will use the separation of
balanced motion from the meso-scales, where our aim is the develop new energy
and momentum consistent stochastic parameterizations of the unresolved processes.
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